1.15 ArpLicaTiONS OF GAuss’'s Law

Electric Charges

and Fields

The electric field due to a general charge distribution is, as seen above,
given by Eq. (1.27). In practice, except for some special cases, the
summation (or integration) involved in this equation cannot be carried

out to give electric field at every point in
space. For some symmetiric charge
conligurations, however, it is possible to
obtain the electric field in a simple way using
the Gauss's law. This is best understood by
some examples.

1.15.1 Field due to an infinitely
long straight uniformly
charged wire

Consider an infinitely long thin straight wire
with uniform linear charge density A. The wire
is obviously an axis of symmetry. Suppose we
take the radial vector from O to P and rotate it
around the wire. The points P, P’, P” so
obtained are completely equivalent with
respect to the charged wire. This implies that
the electric field must have the same magnitude
at these points. The direction of electric field at
every point must be radial (outward if A > 0,
inward if A < 0). This is clear from Fig. 1.29.

Consider a pair of line elements P, and P,
of the wire, as shown. The electric fields
produced by the two elements of the pair when
summed give a resultant electric field which
is radial (the components normal to the radial
vector cancel). This is true for any such pair
and hence the total field at any point P is
radial. Finally, since the wire is infinite,
electric field does not depend on the position
of P along the length of the wire. In short. the
electric field is everywhere radial in the plane
cutting the wire normally, and its magnitude
depends only on the radial distance r.

To calculate the field, imagine a cylindrical
Gaussian surface, as shown in the Fig. 1.29(b).
Since the field is everywhere radial, fux
through the two ends of the cylindrical
Gaussian surface is zero. At the cylindrical
part of the surface, E is normal to the surface
at every point, and its magnitude is constant,
since it depends only on r. The surface area
of the curved part is 2nrl, where lis the length
of the cylinder.
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FIGURE 1.29 (a) Electric [ield due Lo an
infinitely long thin straight wire is radial,
(b) The Gaussian surface for a long thin
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wire of uniformi linear charge density.
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Flux through the Gaussian surface
= [lux through the curved cylindrical part of the surface
= Ex2url

The surface includes charge equal to A L Gauss's law then gives
Ex2nrl= Al/e,

; A
ie., E = 2,
Vectorially. E at any point is given by
_ A
E= n
2me,r (1.32)

where n is the radial unit vector in the plane normal to the wire passing
through the point. E is directed outward if A is positive and inward if Ais
negative.

Note that when we write a vector A as a scalar multiplied by a unit
vector, i.e.. as A= A a, the scalar A is an algebraic number. It can be
negative or positive. The direction of A will be the same as that of the unit
vector aif A> 0 and opposite to a if A < 0. When we want to restrict to
non-negative values, we use the symbol |A|and call it the modulus of A.
Thus, |A|z 0.

Also note that though only the charge enclosed by the surface (A1)
was included above, the electric field E is due to the charge on the entire
wire. Further, the assumption that the wire is infinitely long is crucial.
Without this assumption, we cannot take E to be normal to the curved
part of the cylindrical Gaussian surface. However, Eq. (1.32) is
approximalely true for electric field around the central portions of a long
wire, where the end effects may be ignored.

1.15.2 Field due to a uniformly charged infinite plane sheet

Let o be the uniform surface charge density of an infinite plane sheet

(Fig. 1.30). We take the x-axis normal to the given plane. By symmetry,

the electric field will not depend on y and z coordinates and its direction

at every point must be parallel to the x-direction.

Surfice We can take the Gaussian surface to be a

#  charge density g rectangular parallelepiped of eross-sectional area

A, as shown. (A cylindrical surface will also do.) As

seen from the figure, only the two faces 1 and 2 will

contribute to the flux; electric field lines are parallel

to the other faces and they, therefore, do not
contribute to the total flux.

The unit vector normal to surface 1 is in —x

- direction while the unit vector normal to surface 2

+— N ———F—— . » is in the +x direction. Therefore, lux E.AS through

- : both the surfaces are equal and add up. Therefore
FIGURE 1.30 Gaussian surface lor a the net flux through the Gaussian surface is 2 EA
unifermly charged infinite plane sheeL : ;
The charge enclosed by the closed surface is GA.

38 Therelore by Gauss's law,
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Electric Charges

and Fields
2 EA=06A/g,
or, E=0/2¢e,
Vectorically,
o -
E=—n
2, (1.33)

where 0 is a unit vector normal to the plane and going away [rom it.

E is directed away from the plate if ¢ is positive and toward the plate
if o is negative. Note that the above application of the Gauss’ law has
brought out an additional fact: Eis independent of x also.

For a finite large planar sheet, Eq. (1.33) is approximately true in the
middle regions of the planar sheet, away from the ends.

1.15.3 Field due to a uniformly charged thin spherical shell

Let o be the uniform surface charge density of a thin spherical shell of
radius R (Fig. 1.31). The situation has obvious spherical symmetry. The
field at any point P, outside or inside, can depend only on r (the radial
distance [rom the centre of the shell to the point) and must be radial (i.e.,
along the radius vector).

(i) Field outside the shell: Consider a point P outside the

Gaussian surface

shell with radius vector r. To calculate E at P, we take the
Gaussian surface to be a sphere of radius rand with centre
O, passing through P. All points on this sphere are equivalent
relative to the given charged configuration. (That is what we
mean by spherical symmetry.) The eleetric field at each point
of the Gaussian surface, therefore. has the same magnitude
E and is along the radius vector at each point. Thus, E and
AS at every point are parallel and the flux through each
element is EAS. Summing over all AS, the flux through the
Gaussian surface is E x 4 © r®. The charge enclosed is
ox4n R’ By Gauss's law

a
Ex4anrt=_42R

0

2
Or, E:crﬂzz 9 5
E,r° 4AmEgT

where g = 4 7 R? gis the total charge on the spherical shell.

Vectorially,
9 .
B = (1.34)
i ]

The electric field is directed outward il g > 0 and inward if
g < 0. This, however, is exactly the field produced by a charge
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FIGURE 1.31 Gaussian
surfaces for a point with
[alr>R b)r< R

g placed at the centre O. Thus for points outside the shell. the Held due
to a uniformly charged shell is as if the entire charge of the shell is
concentrated at its centre.

(ii) Field inside the shell: In Fig. 1.31(b), the point P is inside the
shell. The Gaussian surface is again a sphere through P centred at O.
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The flux through the Gaussian surface. calculated as before, is
E x 4 nr*. However, in this case, the Gaussian surface encloses no
charge. Gauss's law then gives

Ex4anr®=0

(r<R) (1.35)

that is, the field due to a uniformly charged thin shell is zero at all points
inside the shell®. This important resull is a direct consequence of Gauss's
law which follows from Coulomb’s law. The experimental verification of
this result confirms the 1/r* dependence in Coulomb's law.

Examreie 1.13

Example 1.13 An early model for an atom considered it to have a
positively charged point nueleus of charge Ze, surrounded by a
uniform density of negative charge up to a radius R. The atom as a
whole is neutral. For this model, what is the electric field at a distance
r from the nucleus?

FIGURE 1.32

Solution The charge distribution for this model of the atom is as
shown in Fig. 1.32. The total negative charge in the uniform spherical
charge distribution of radius R must be -Z e, since the atom (nucleus
of charge Z e + negative charge) is neutral. This immediately gives us
the negative charge density p, since we must have

4nR” :
. ,_p—ﬂ—ze

. -__'3-'-"5?

or P= 4’”_?3

To find the eleciric field E{r) at a point P which is a distance r away
from the nucleus, we use Gauss's law. Because of the spherical
symmetry of the charge distribution. the magnitude of the electric
field E(r) depends only on the radial distance, no matter what the
direction of r. Its direction is along (or opposite to) the radius vector r
from the origin to the point P. The obvious Gaussian surface is a
spherical surface centred at the nucleus. We consider two situations,
namely, r< Rand r> R

(i) r < R : The electric flux ¢ enclosed by the spherical surface is

0= E(r)x4nr?
where E (r) is the magnitude of the electrie field at r. This is because

Compare this with a uniform mass shell discussed in Section 8.5 of Class XI

Textbook of Physics.
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the field at any point on the spherical Gaussian surface has the
same direction as the normal to the surface there, and has the same
magnitude at all points on the surface.
The charge g enclosed by the Gaussian surface is the positive nuclear
charge and the negative charge within the sphere ol radius r,

anr®
3

Le., 9=Ze + P

Substituting for the charge density p obtained earlier, we have
: 3

2
=Ze-Ze—

q e ERB

Gauss's law then gives,

O
rtes PR TR

The eleciric field is directed radially outward.

(i) r > R: In this case, the total charge enclosed by the Gaussian
spherical surface is zero since the atom is neutral. Thus. from Gauss's
law,

E(r)x4n =0 or E(r)=0; r>R _

At r = R. both cases give the same result: E= 0.
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